Smart optical coherence tomography for ultra-deep imaging through highly scattering media

نویسندگان

  • Amaury Badon
  • Dayan Li
  • Geoffroy Lerosey
  • A Claude Boccara
  • Mathias Fink
  • Alexandre Aubry
چکیده

Multiple scattering of waves in disordered media is a nightmare whether it is for detection or imaging purposes. So far, the best approach to get rid of multiple scattering is optical coherence tomography. This basically combines confocal microscopy and coherence time gating to discriminate ballistic photons from a predominant multiple scattering background. Nevertheless, the imaging-depth range remains limited to 1 mm at best in human soft tissues because of aberrations and multiple scattering. We propose a matrix approach of optical imaging to push back this fundamental limit. By combining a matrix discrimination of ballistic waves and iterative time reversal, we show, both theoretically and experimentally, an extension of the imaging-depth limit by at least a factor of 2 compared to optical coherence tomography. In particular, the reported experiment demonstrates imaging through a strongly scattering layer from which only 1 reflected photon out of 1000 billion is ballistic. This approach opens a new route toward ultra-deep tissue imaging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media.

An optical Doppler tomography (ODT) system that permits imaging of fluid flow velocity in highly scattering media is described. ODT combines Doppler velocimetry with the high spatial resolution of low-coherence optical interferometry to measure fluid flow velocity at discrete spatial locations. Tomographic imaging of particle flow velocity within a circular conduit submerged 1 mm below the surf...

متن کامل

Evaluation of Optical Coherence Tomography Angiography Findings in Patients with Branch Retinal Vein Occlusion

Purpose: To analyze the correlation of optical coherence tomography angiography (OCTA) findings with visual acuity (VA) in patients with branch retinal vein occlusion (BRVO). Methods: This cross-sectional study was performed on 20 eyes of 20 patients with unilateral BRVO involving the macula referred to the ophthalmology clinic of Rassoul Akram Hospital. OCTA imaging was conducted for all patie...

متن کامل

Self-referenced Doppler optical coherence tomography.

Doppler optical coherence tomography (DOCT) allows simultaneous micrometer-scale resolution cross-sectional imaging of tissue structure and blood flow. We demonstrate a fiber-optic polarization-diversity-based differential phase contrast DOCT system as a method to perform self-referenced velocimetry in highly scattering media. Using this strategy, we reduced common-mode interferometer noise to ...

متن کامل

Development of an Advanced Optical Coherence Tomography System for Radiation Dosimetry

Introduction: According to the literature, optical coherence tomography (OCT) can be used measure radiation absorbed dose. This study was carried out to design a computed tomography system for the calculation of absorbed dose and optimization of dose delivery in radiotherapy using gel dosimeters. Material and Methods: An advanced charge-coupled device based OCT system was developed in laborator...

متن کامل

Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells.

We demonstrate photothermal optical coherence tomography (OCT) imaging in highly scattering human breast tissue ex vivo. A 120 kHz axial scan rate, swept-source phase-sensitive OCT system at 1300 nm was used to detect phase changes induced by 830 nm photothermal excitation of gold nanoshells. Localized phase modulation was observed 300-600 microm deep in scattering tissue using an excitation po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2016